A branching particle system as a model of pushed fronts

Julie Tourniaire

March, 2024

University of Vienna joint work with E. Schertzer and F. Foutel–Rodier

Motivation

\rightsquigarrow cooperating population invading a 1D-habitat

competition	cooperation (or Allee effect)
individuals compete for	collective defence against predators
resources	difficulty to find a mate at low densities

→ internal mechanisms driving the invasion

cooperation vs. **competition** \Rightarrow phase transition ?

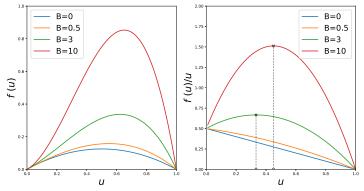
→ genealogical structure of the population ?

Monostable RD Equations: $u(t, x) \in [0, 1]$ = density of individuals

$$u_t = \frac{1}{2}u_{xx} + f(u)$$
 with $f(u) = \frac{1}{2}u(1-u)(1+Bu)$

cooperation in the PDE

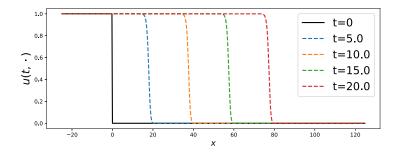
the per capita growth rate $\frac{f(u)}{u}$ is maximal at intermediate densities



B = strength of the cooperation

Convergence to travelling wave solutions: if $u(0, x) = \mathbf{1}_{x<0}$, for $t \gg 1$

$$u(t,x) \approx \varphi(x - ct + x_0)$$



 $\begin{array}{l} \textit{c} \text{ speed of invasion} \\ \varphi \text{ limiting profile of the invasion} \end{array}$

Macroscopic dynamics of the invasion

Pulled and pushed fronts two classes of travelling fronts Stokes '76

$$u_t = \frac{1}{2}u_{xx} + f(u)$$
 with $f(u) = \frac{1}{2}u(1-u)(1+Bu)$

pulled fronts $c = \sqrt{2f'(0)}$

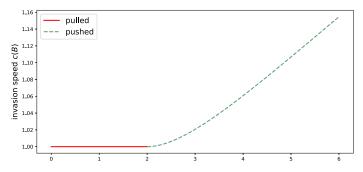
pushed fronts $c > \sqrt{2f'(0)}$

speed as the **linearised** equation

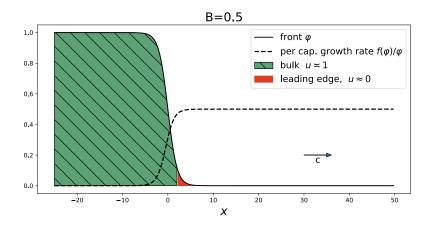
faster than pulled fronts

 $u_t=\frac{1}{2}u_{xx}+f'(0)u$

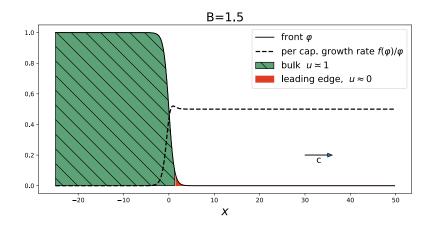
First phase transition: *B* large enough \Rightarrow acceleration of the fronts



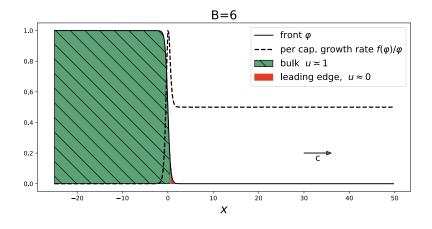
4



strength of the cooperation	$B \in (0,2)$	<i>B</i> > 2
type of invasion	pulled	pushed
speed <i>c</i>	$c=\sqrt{2f'(0)}$	$c > \sqrt{2f'(0)}$



strength of the cooperation	$B \in (0,2)$	<i>B</i> > 2
type of invasion	pulled	pushed
speed <i>c</i>	$c=\sqrt{2f'(0)}$	$c > \sqrt{2f'(0)}$



strength of the cooperation	$B \in (0,2)$	<i>B</i> > 2
type of invasion	pulled	pushed
speed <i>c</i>	$c=\sqrt{2f'(0)}$	$c > \sqrt{2f'(0)}$

Questions:

- 1. Where are the particles leading the invasion and thus the evolutionary dynamics ?
- 2. Sample an individual at the tip of the invasion front at time T. Where is its ancestor at time T - t?
- 3. Same question for two individuals sampled at time *t* and their MRCA.
- (?) at the leading edge in **pulled** fronts,
- (?) in the bulk for **pushed** fronts.
- \rightsquigarrow Not so simple !
 - 4. Genealogical structure of k ind. sampled at the tip of the front ?

A third class of monostable invasions Birzu et al. '18

Effect of demographic fluctuations on the fronts arising from

$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+\frac{B}{u}) + \sqrt{\frac{u}{N}W(t,x)},$$

- N: local density of individuals
- X_t : position of the front
- Numerical observations:

$$\langle (X_t - ct)^2 \rangle \approx \sigma^2(N)t$$

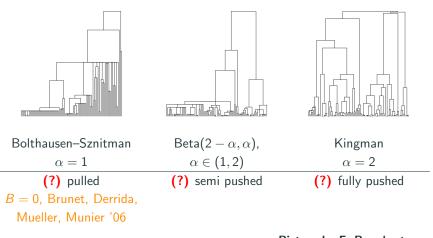
Allee effect	$B \in (0,2)$	$B \in (2,4)$	<i>B</i> > 4
in the PDE	pulled waves	pushed waves	
variance σ^2	$\log(N)^{-3}$	$N^{1- ildelpha}$, $ ildelpha\in(1,2)$	N^{-1}
time scale	$\log(N)^3$	$N^{ ilde{lpha}-1}$	N
in the SPDE	pulled	semi pushed	fully pushed
effect fluctuations	very sensitive		CLT

B=0 : Brunet, Derrida, Mueller, Munier '06

Microscopic model for invasion fronts capturing

(?) the internal mechanisms leading to this second phase transition ?

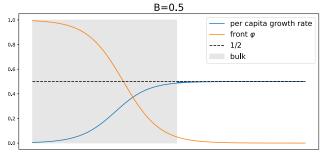
(?) the genealogical structure at the tip ?



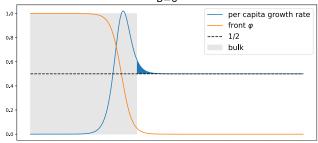
Picture by F. Boenkost

Birzu et al. '20

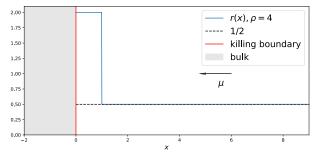
A toy model



B=6



A toy model



Dyadic branching Brownian motion with absorption at 0 with

• space-dependent branching rate r(x):

$$r(x) = \frac{1}{2} + \frac{\rho - 1}{2} \mathbf{1}_{x \in [0,1]},$$

 ρ strength of the cooperation

- negative drift $-\mu(\rho)$ chosen such that the number of particles stays roughly constant
 - μ speed of the wave

The case $\rho = 1$ (Berestycki, Berestycki, Schweinsberg '13)

For $\rho = 1$, $\mu = 1$ (speed of pulled waves)

 Z_t = number of particles in the moving frame at time t

At t = 0, the system starts with $\approx N$ particles in a *stable* configuration

Let $\overline{Z}_t = Z_t / N$.

Theorem (demographic fluctuations)

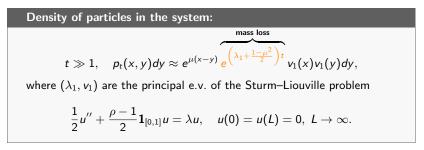
 $(\overline{Z}_{log(N)^{3}t})_{t>0}$ converges to Neveu's Continuous-state branching process (CSBP) as $N \to \infty$.

- (i) time scale of the fluctuations for B = 0 in the SPDE.
- (ii) Genealogy associated to Neveu's CSBP = Bolthausen-Sznitman coal.
 (Bertoin, Le Gall '00)

Theorem (genealogy)

The genealogy of the BBM is given by a **Bolthausen–Sznitman coales**cent on the time scale $log(N)^3$ □ Can we obtain a similar result on \overline{Z}_t for $\rho > 1$? □ Genealogy of the BBM ?

The pulled and pushed regimes in the particle system



 $\rightsquigarrow \lambda_1 = \lambda_1(\rho)$ quantifies the growth of the system \Rightarrow we set $\mu = \sqrt{1 + 2\lambda_1}$

Pulled/pushed regime.

1. if
$$\rho < \rho_1$$
, $\lambda_1(\rho) = 0$ (pulled)

2. if
$$\rho > \rho_1$$
, $\lambda_1(\rho) > 0$ and $\lambda_1 \nearrow \varkappa$ w. r. t. ρ (pushed)

in this case,
$$v_1(x) \propto e^{-\sqrt{\mu^2-1} x}$$
 as $x \to \infty$

<u>notation:</u> $\beta := \sqrt{\mu^2 - 1}$ (decay of the first e.v.)

The semi pushed regime in the particle system

Assume that the system starts with N particles at 1.

$$\bar{Z}_t = \frac{Z_t}{N}$$
 rescaled number of particles in the system
 $\alpha = \alpha(\rho) := \frac{\mu + \sqrt{\mu^2 - 1}}{\mu - \sqrt{\mu^2 - 1}} = \frac{\mu + \beta}{\mu - \beta}$

The semi-pushed regime (T. '22)

There exist $\rho_1 < \rho_2$ such that for all $\rho \in (\rho_1, \rho_2)$,

- 1. the exponent α is increasing and $\alpha(\rho_i) = i$
- 2. $(\overline{Z}_{N^{\alpha-1}t})_{t>0}$ converges (f.d.d.) to an α -stable CSBP.

Conjectures

if
$$\rho < \rho_1$$
 ($\mu = 1$, $\alpha = 1$), ($\overline{Z}_{log(N)^3 t}$)_{t>0} \Rightarrow Neveu's CSBP
if $\rho > \rho_2$ ($\mu > \frac{3}{4}\sqrt{2}$, $\alpha > 2$), (\overline{Z}_{Nt})_{t>0} \Rightarrow Feller diffusion

<u>Remark</u> α -stable CSBP \Leftrightarrow time changed Beta $(2 - \alpha, \alpha)$ -coalescent time change $T_t := \int_0^t (X_s)^{1-\alpha}$, $T^{-1}(t) = \inf\{s > 0 : T_s > t\}$ ($X_s \alpha$ -stab.) (Birkner, Blath, Capaldo, Etheridge, Möhle, Schweinsberg, Wakolbinger' 05)

Remarks

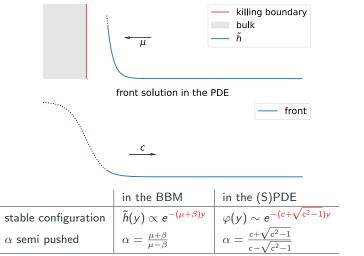
$$p_t(x,y) \approx \underbrace{e^{\mu x} v_1(x)}_{e^{\mu x} v_1(x)} \times \underbrace{e^{-\mu y} v_1(y)}_{e^{\mu y} v_1(y)}$$

stable configuration
$$\tilde{h}(y)$$

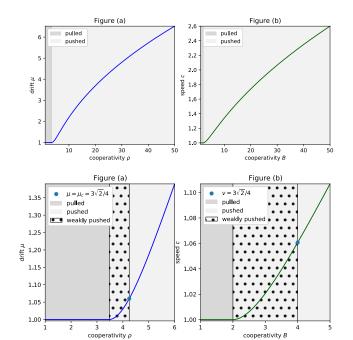
reproductive value
$$h(x)$$

 $v_1(y) pprox e^{-eta y}, \quad eta = \sqrt{\mu^2 - 1}$

stable configuration in the BBM



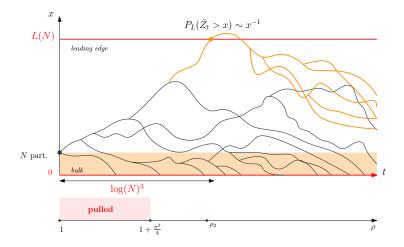
Remarks



18

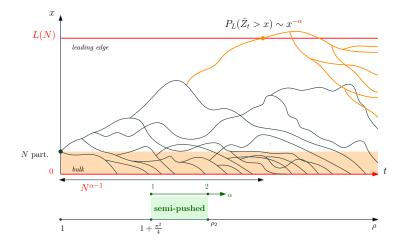
Idea of the proof:

Berestycki, Berestycki, Schweinsberg ($\rho = 1$) '13: Set L(N) s.t. $\mathbb{E}_{L}[\overline{Z}_{t}] = 1$



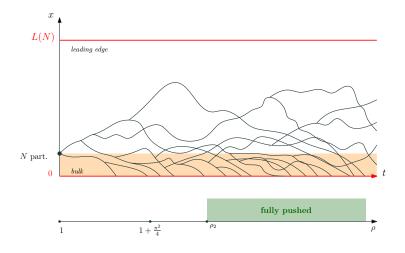
Idea of the proof:

Berestycki, Berestycki, Schweinsberg ($\rho = 1$) '13: Set L(N) s.t. $\mathbb{E}_{L}[\overline{Z}_{t}] = 1$



Idea of the proof:

Berestycki, Berestycki, Schweinsberg ($\rho = 1$) '13: Set L(N) s.t. $\mathbb{E}_{L}[\overline{Z}_{t}] = 1$



The fully pushed regime $\alpha > 2$

Method of moments (Foutel-Rodier, Schertzer '22)

$$N\mathbb{P}_x(\overline{Z}_{Nt}>0) \rightarrow \frac{2h(x)}{\Sigma^2(\rho)t}, \quad N \rightarrow \infty. \quad h(x) := e^{\mu x} v_1(x)$$

<u>Remark</u> \approx Kolmogorov estimate for multi-type GW processes

 $\mathbb{E}_{x}[\bar{Z}_{t}] \approx \frac{1}{N}h(x) \Rightarrow h(x) \text{ reproductive value of a part. located at } x$ $\Sigma^{2}(\rho)/2 \text{ "reproductive variance"}$

Yaglom law (Schertzer-T. '23)

Starting from 1 part. at x, conditional on survival, $\bar{Z}_{Nt} \Rightarrow \frac{\Sigma^2 t}{2} \mathcal{E}$ (\mathcal{E} standard **exponential** distribution)

Remark multi-type GW, Feller diffusion

The fully pushed regime $\alpha > 2$

For 2 particles u, v alive at time t,

 $d_t(u, v)$:= time to the MRCA $|v \wedge u|$

At t = 0, the system starts with a single particle at x > 0.

Genealogy (Schertzer-T. '23)

Conditional on $\{Z_{tN} > 0\}$, sample k individuals in the BBM at time tN denoted by $(v_1, ..., v_k)$. The distance matrix

$$\left(\frac{1}{N}d_{tN}(v_i,v_j)\right)_{i,j}$$

converges to that of a **critical GW process** with **finite variance** conditioned on surviving up to a large time.

Remark: only binary mergers

Moments of the BBM for $\alpha > 2$

 $\frac{\text{spine} = \text{path of an immortal particle}: \text{ stationary distribution } h\tilde{h} = (v_1)^2$ (Doob *h*-transform)

moments:

$$\mathbb{E}_{x}[\bar{Z}_{t}^{(K)}] \approx \frac{1}{N}h(x)K!t^{K-1} \left(\underbrace{\int r(z)h(z)^{2}\tilde{h}(z)dz}_{=1} \right)^{K-1} \underbrace{\left(\int \tilde{h}\right)^{K}}_{=1}$$

▶ Reminder: $v_1(z) \approx e^{-\beta z}$ $(z \gg 1)$, $h(z) = e^{\mu z} v_1(z)$ and $\alpha = \frac{\mu + \beta}{\mu - \beta}$.

(...) integral on the branching point of the genealogical tree

$$\Sigma^2 \propto \int e^{(\mu-3\beta)z} dz < \infty \iff \mu < 3\beta \iff \alpha > 2.$$

Moments of the BBM for $\alpha > 2$

$$\mathbb{E}_{x}[\bar{Z}_{t}^{(K)}] \approx \frac{1}{N}h(x)K!t^{K-1}\left(\frac{\Sigma^{2}}{2}\right)^{K-1}$$

 $\underline{\text{Kolmogorov estimate}} \mathbb{P}_{x} \left(\bar{Z}_{t} > 0 \right) \approx \frac{2}{\Sigma^{2}} \frac{h(x)}{tN}$

$$\mathbb{E}_{x}[\bar{Z}_{t}^{(K)}|\bar{Z}_{t}>0]\approx K!\left(\frac{\Sigma^{2}t}{2}\right)^{K}$$

 \Rightarrow moments of an exponential rv with parameter $\frac{\Sigma^2}{2}t$

The semi pushed regime $\alpha \in (1,2)$

$$\mathbb{E}_{x}[\bar{Z}_{t}^{(\kappa)}] \approx \frac{1}{N}h(x)\kappa!t^{\kappa-1}\left(\underbrace{\int r(z)h(z)^{2}\tilde{h}(z)dz}_{=1}\right)^{\kappa-1}\underbrace{\left(\int \tilde{h}\right)^{\kappa}}_{=1}$$

(...) integral on the branching point of the genealogical tree

$$\Sigma^2 \propto \int e^{(\mu-3\beta)z} dz < \infty \iff \mu < 3\beta \iff \alpha > 2.$$

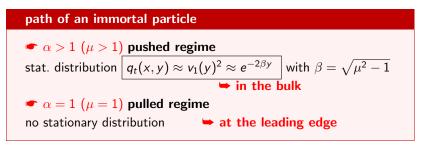
α > 2: the branching points are concentrated around 0
 α ∈ [1, 2): the branching points are at +∞

Cut-off method Foutel-Rodier, Schertzer, T. 23+

The genealogy of the BBM coincides with that of an α -stable CSBP.

Conclusion

Questions: Sample an individual at the tip of the invasion front at time T. Where is its ancestor at time T - t? Same question for two individuals sampled at time t and their MRCA.



position of the branching points in the genealogical tree

• $\alpha > 2$ fully pushed regime		
$\Sigma^2 < \infty$ in the bulk		
• $\alpha \in [1,2)$ pulled and semi pushed regimes		
$\Sigma^2 = \infty$ \blacktriangleright at the leading edge		

Conclusion

	pulled	semi-pushed	fully pushed
В	0	2	4
PDE	pulled	pushed	
invasion speed	c = 1	c = c(B) > 1
time scale	$\log(N)^3$	$N^{ ilde{lpha}-1}$	N
ρ	1	ρ_1	ρ_2
time scale	$\log(N)^3$	N^{lpha-1}	N
drift	$\mu = 1$	$\mu = \mu(\rho) > 1$	
exponent	lpha = 1	$\alpha \in (1,2)$	$\alpha > 2$
limiting CSBP	Neveu (?)	lpha-stable	Feller
evolutionary dyn.	at the leading edge		in the bulk
driven by part	$\Sigma^2 = +\infty$		$\Sigma^2 < \infty$
path of an	far to the right in the		
immortal part.	no stat. distribution	$v_1^2(x) \sim$	$\sim e^{-2\beta x}$