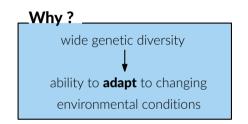
A particle system as a model of FKPP fronts

Julie Tourniaire

Population Genetics

- (?) Understand the complex genetic diversity around us
- (?) Identify the main forces that shaped our genetic landscape
 <u>ex</u>: natural selection, spatial structure, demography, etc.



Sequence 1	Α	Т	С	С	Т	Т	Т
Sequence 2	А	Т	С	С	Т	А	Т
Sequence 3	А	С	С	С	Т	А	Т
Sequence 4	A	С	С	С	Т	A	Т

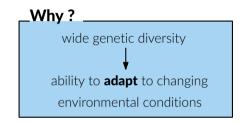
Figure: DNA sequence alignment

Population Genetics

- (?) Understand the complex genetic diversity around us
- (?) Identify the main forces that shaped our genetic landscape
 <u>ex</u>: natural selection, spatial structure, demography, etc.

Sequence 1	Α	Т	С	С	Т	Т	Т
Sequence 2	А	Т	С	С	Т	А	Т
Sequence 3	Α	С	С	С	Т	А	Т
Sequence 4	А	С	С	С	Т	А	Т

Figure: DNA sequence alignment



_How ?

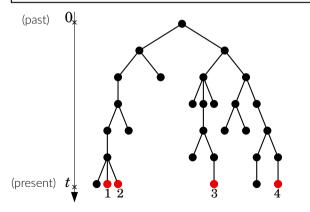
Genealogical approach

= reconstruct the typical

genealogy of the population

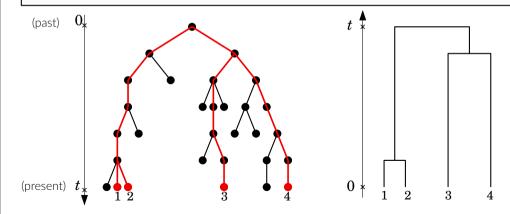
_How ? ____

Genealogical approach = reconstruct the typical genealogy of the population



_How ? ____

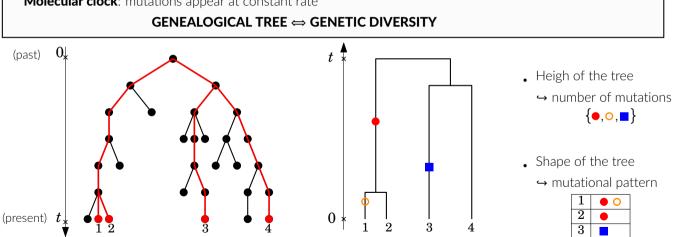
Genealogical approach = reconstruct the typical genealogy of the population



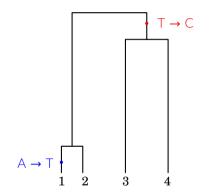
How?

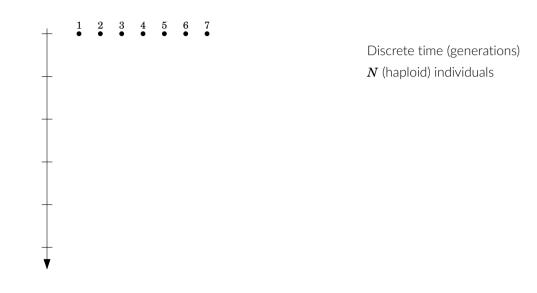
Genealogical approach = reconstruct the typical genealogy of the population

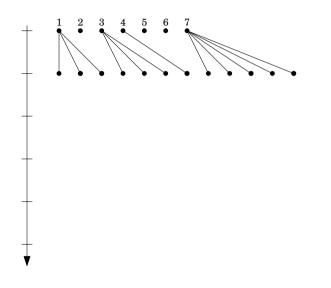
Molecular clock: mutations appear at constant rate



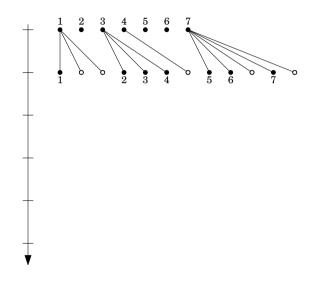
Sequence 1	Α	Т	С	С	Т	Т	Т
Sequence 2	А	Т	С	С	Т	А	Т
Sequence 3	А	С	С	С	Т	А	Т
Sequence 4	A	С	С	С	Т	A	Т







Discrete time (generations) N (haploid) individuals X_i number of the children of the *i*-th individual $X_1,...,X_N$ are i.i.d. and $\mathbf{E}[X_1] > 1$



Discrete time (generations)

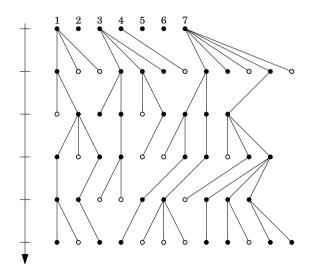
 ${\it N}$ (haploid) individuals

 X_i number of the children of the i-th individual

 $X_1,...,X_N$ are i.i.d. and $\mathbf{E}[X_1] > 1$

_Truncation step

Pick uniformly N newborns



Discrete time (generations) N (haploid) individuals

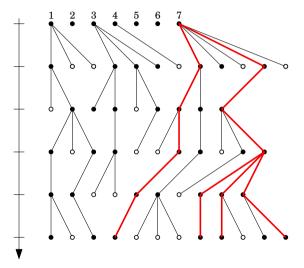
 X_i number of the children of the i-th individual

 $X_1,...,X_N$ are i.i.d. and $\mathbf{E}[X_1] > 1$

_Truncation step _

Pick uniformly N newborns

and so on...



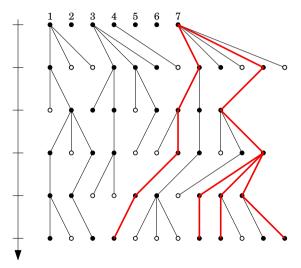
Discrete time (generations) N (haploid) individuals X_i number of the children of the *i*-th individual $X_1,...,X_N$ are i.i.d. and $\mathbf{E}[X_1] > 1$

_Truncation step

Pick uniformly N newborns

and so on...

What can be said about the genealogy of this population?



N (haploid) individuals

Let N go to ∞

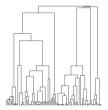
FINITE VARANCE

if $\mathbf{E}[(X_1)^2] < \infty$,

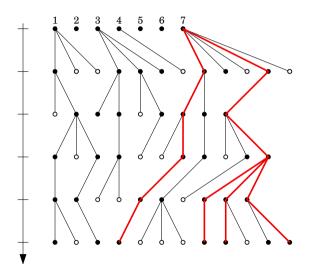
the genealogy is given by

Kingman's coalescent

(a binary tree)



What can be said about the genealogy of this population ?



 ${\it N}$ (haploid) individuals

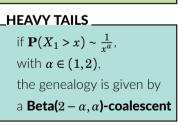
Let N go to ∞

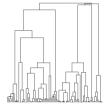
FINITE VARANCE

if $\mathbf{E}[(X_1)^2] < \infty$,

the genealogy is given by

Kingman's coalescent (a binary tree)





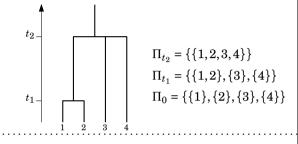
What can be said about the genealogy of this population ?

A CLASS OF EXCHANGEABLE GENEALOGIES: BETA COALESCENTS

 <u>coalescent process</u>: continuous-time Markov process with values in the set of partitions of {1,...,n}

merging of blocks \Leftrightarrow merging of ancestral lines

• exchangeable coalescent: all the blocks play the same role



A CLASS OF EXCHANGEABLE GENEALOGIES: BETA COALESCENTS

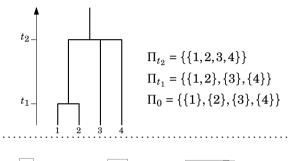
• coalescent process: continuous-time Markov process with values in the set of partitions of $\{1,...,n\}$

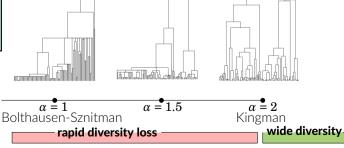
merging of blocks \Leftrightarrow merging of ancestral lines

• exchangeable coalescent: all the blocks play the same role rich mathematical structure (Pitman 99 and Sagitov 99)

BETA-COALESCENTS

in a Beta(2 – α , α)-coalescent, blocks merge at rates $\lambda_{b,k} = c_{\alpha} \int_{0}^{1} x^{b-1-\alpha} (1-x)^{\alpha+k-b-1} dx$





A CLASS OF EXCHANGEABLE GENEALOGIES: BETA COALESCENTS

• coalescent process: continuous-time Markov process with values in the set of partitions of $\{1,...,n\}$

merging of blocks \Leftrightarrow merging of ancestral lines

• exchangeable coalescent: all the blocks play the same role rich mathematical structure (Pitman 99 and Sagitov 99)

BETA-COALESCENTS

in a Beta $(2 - \alpha, \alpha)$ -coalescent, blocks merge at rates $\lambda_{b,k} = c_{\alpha} \int_{0}^{1} x^{b-1-\alpha} (1-x)^{\alpha+k-b-1} dx$

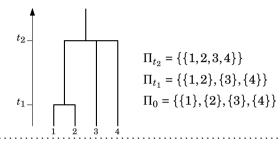
LIMITATIONS

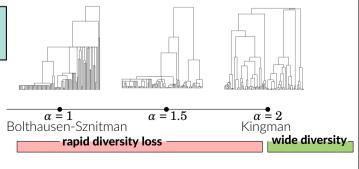
• a priori only suitable for neutral models

equal chances of reproductive success

no selection, no structure

MAJOR FORCES IN EVOLUTION !





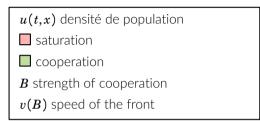
$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)$$

u(t,x) densité de population ■ saturation

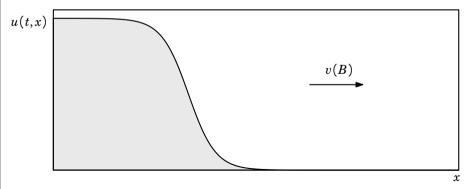
$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$

u(t,x) densité de population
saturation
cooperation *B* strength of cooperation

$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$

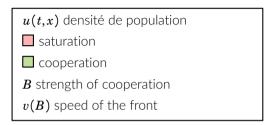


 $\frac{\text{Travelling front solutions:}}{\text{constant profile travelling}}$ at constant speed v(B)

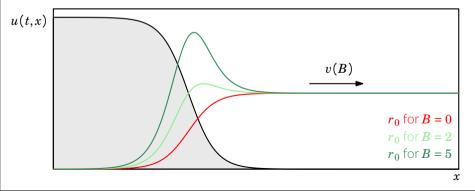


$$u_{t} = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$
$$= \frac{1}{2}u_{xx} + u \qquad \underbrace{r_{0}(u)}_{u=1}$$

per capita growth rate

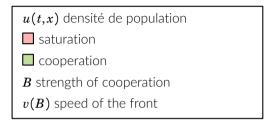


Travelling front solutions: constant profile travelling at constant speed v(B)



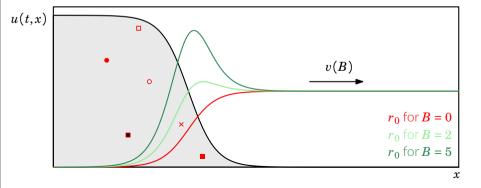
$$u_{t} = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$
$$= \frac{1}{2}u_{xx} + u \qquad \underbrace{r_{0}(u)}_{u \to u}$$

per capita growth rate



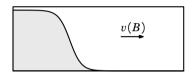
 $\frac{\text{Travelling front solutions:}}{\text{constant profile travelling}}$ at constant speed v(B)

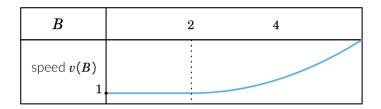
Sample k individuals in the front Genealogy ? Position of the ancestors ? Phase transition ? → discrete model



FKPP Equation

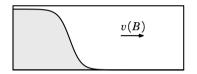
$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$

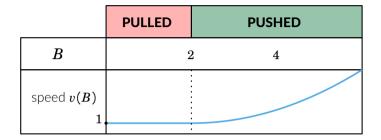




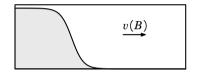
FKPP Equation

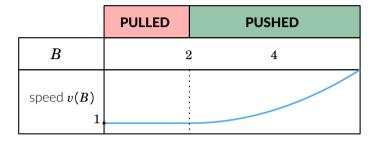
$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$



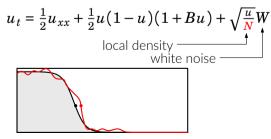


$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$

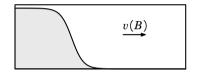


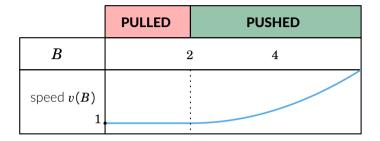


Noisy FKPP Equation

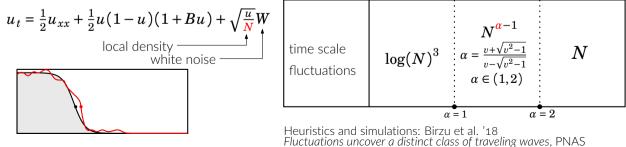


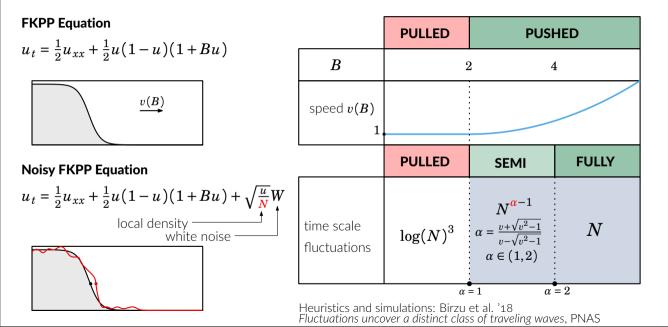
$$u_t = \frac{1}{2}u_{xx} + \frac{1}{2}u(1-u)(1+Bu)$$



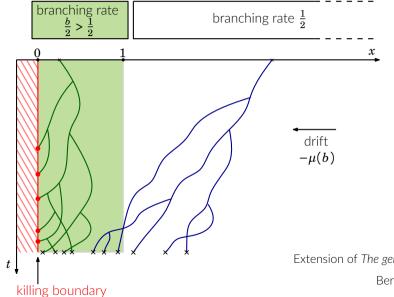


Noisy FKPP Equation





A TOY MODEL TO INVESTIGATE THE PHASE DIAGRAM

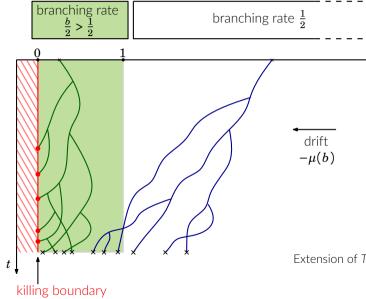


Dyadic branching Brownian motion with branching rate $r(x) = \frac{1}{2}[(b-1)\mathbf{1}_{x<1} + 1]$ killing at 0 "critical" drift $-\mu(b)$

Extension of The genealogy of branching Brownian motion with absorption

Berestycki, Berestycki, Schweinsberg 2013 ($b = 1, \mu = 1$)

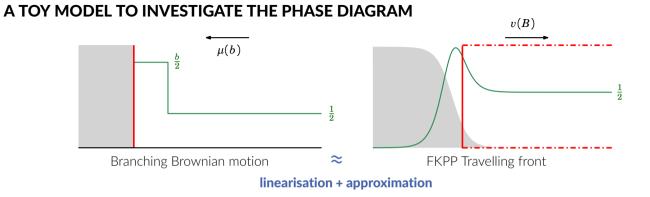
A TOY MODEL TO INVESTIGATE THE PHASE DIAGRAM

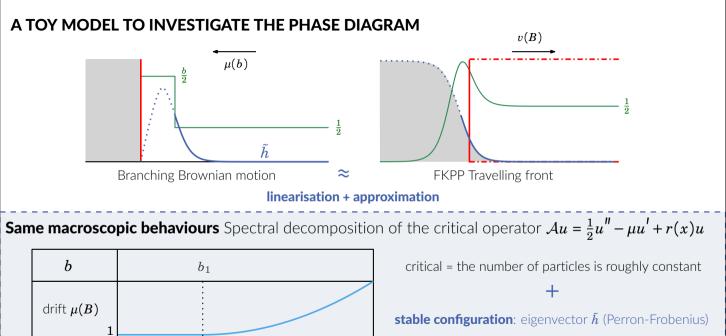


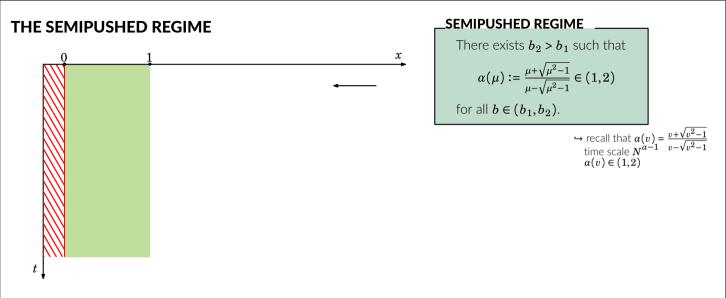
Dyadic branching Brownian motion with branching rate $r(x) = \frac{1}{2}[(b-1)\mathbf{1}_{x<1} + 1]$ killing at 0 "critical" drift $-\mu(b)$

A model for travelling fronts?

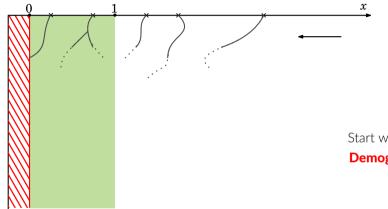
Extension of The genealogy of branching Brownian motion with absorption Berestycki, Berestycki, Schweinsberg 2013 ($b = 1, \mu = 1$)







THE SEMIPUSHED REGIME



_SEMIPUSHED REGIME

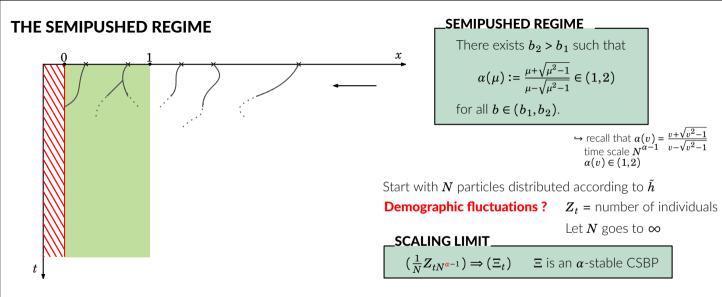
There exists $b_2 > b_1$ such that

$$\alpha(\mu) := \frac{\mu + \sqrt{\mu^2 - 1}}{\mu - \sqrt{\mu^2 - 1}} \in (1, 2)$$

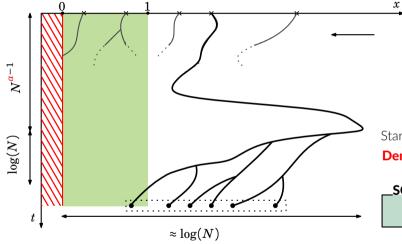
or all $b \in (b_1, b_2)$.

 $\begin{array}{l} \hookrightarrow \text{ recall that } \alpha(v) = \frac{v + \sqrt{v^2 - 1}}{v - \sqrt{v^2 - 1}} \\ \text{time scale } N^{\alpha - 1} \\ \alpha(v) \in (1, 2) \end{array}$

Start with N particles distributed according to \tilde{h} Demographic fluctuations ?



THE SEMIPUSHED REGIME



_SEMIPUSHED REGIME

There exists $b_2 > b_1$ such that

$$\alpha(\mu) := \frac{\mu + \sqrt{\mu^2 - 1}}{\mu - \sqrt{\mu^2 - 1}} \in (1, 2)$$

or all $b \in (b_1, b_2)$.

 $\begin{array}{l} \hookrightarrow \text{ recall that } \alpha(v) = \frac{v + \sqrt{v^2 - 1}}{v - \sqrt{v^2 - 1}} \\ \text{time scale } N^{\alpha - 1} = \frac{v - \sqrt{v^2 - 1}}{v - \sqrt{v^2 - 1}} \\ \alpha(v) \in (1, 2) \end{array}$

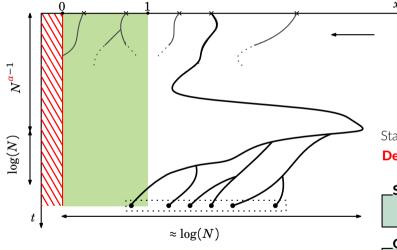
Start with N particles distributed according to \tilde{h} **Demographic fluctuations ?** Z_t = number of individuals Let N goes to ∞

SCALING LIMIT

 $(\frac{1}{N}Z_{tN^{\alpha-1}}) \Rightarrow (\Xi_t) \qquad \Xi \text{ is an } \alpha \text{-stable CSBP}$

 $\therefore \bullet \bullet \bullet \Rightarrow \approx N$ descendants

THE SEMIPUSHED REGIME



 $\bullet \bullet \bullet = \approx N$ descendants

_SEMIPUSHED REGIME

There exists $b_2 > b_1$ such that

$$\alpha(\mu) := \frac{\mu + \sqrt{\mu^2 - 1}}{\mu - \sqrt{\mu^2 - 1}} \in (1, 2)$$

or all $b \in (b_1, b_2)$.

 $\Rightarrow \text{ recall that } \alpha(v) = \frac{v + \sqrt{v^2 - 1}}{v - \sqrt{v^2 - 1}} \\ \text{time scale } N^{\alpha - 1} = \frac{v - \sqrt{v^2 - 1}}{v - \sqrt{v^2 - 1}} \\ \alpha(v) \in (1, 2)$

Start with N particles distributed according to $ilde{h}$

Demographic fluctuations ? Z_t = number of individuals

Let N goes to ∞

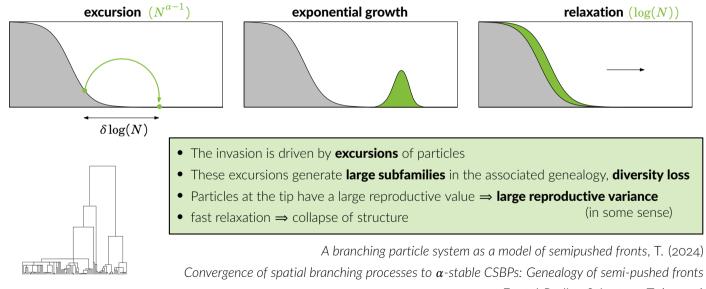
SCALING LIMIT

 $(\frac{1}{N}Z_{tN^{\alpha-1}}) \Rightarrow (\Xi_t) \qquad \Xi \text{ is an } \alpha \text{-stable CSBP}$

GENEALOGY

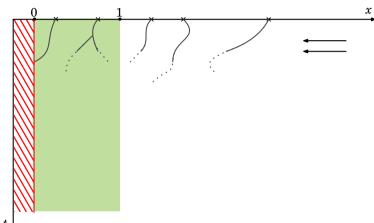
The genealogy of the BBM converges to a Beta($2 - \alpha, \alpha$)-coalescent

THE SEMIPUSHED REGIME $b \in (b_1, b_2)$



Foutel-Rodier, Schertzer, T. (2024+)

THE FULLY PUSHED REGIME



FULLY PUSHED REGIME -

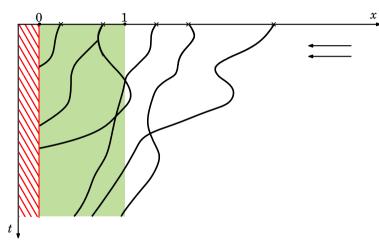
For $b > b_2$, $\alpha > 2$

Start with N particles distributed according to $ilde{h}$

Demographic fluctuations ?

 Z_t = number of individuals Let N goes to ∞

THE FULLY PUSHED REGIME



FULLY PUSHED REGIME -

For $b > b_2$, $\alpha > 2$

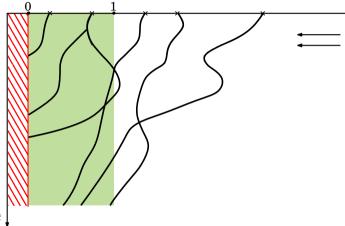
Start with N particles distributed according to $ilde{h}$

Demographic fluctuations ?

 Z_t = number of individuals Let N goes to ∞

No excursion !

THE FULLY PUSHED REGIME



FULLY PUSHED REGIME

For $b > b_2$, $\alpha > 2$

Start with N particles distributed according to $ilde{h}$

Demographic fluctuations ?

 Z_t = number of individuals

Let N goes to ∞

х

No excursion ! → "CLT"/mean field

_SCALING LIMIT____

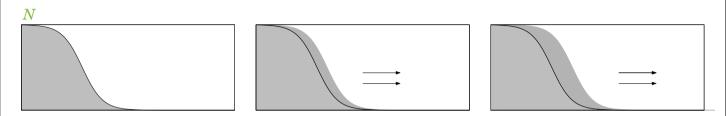
 $(\frac{1}{N}Z_{tN}) \Rightarrow (X_t)$ X is a Feller diffusion

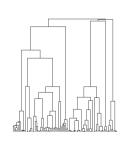
GENEALOGY

The genealogy of the BBM converges to Kingman's coalescent

t

THE FULLY PUSHED REGIME $b > b_2$





- The invasion is pushed by the **growth** in the front
- This generates only binary mergers in the associated genealogy, wide genetic diversity
- The tip is not accessible \Rightarrow finite reproductive variance

Spectral analysis and **k**-spine decomposition of inhomogeneous branching Brownian motions. Genealogies in fully pushed fronts. Schertzer, T. (2024+)

CONCLUSION

		PULLED	SEMI	FULLY
	В	2	2 4	4
FKPP	speed <i>v(B)</i> 1			
	time scale fluctuations	$\log(N)^3$	$N^{\alpha-1}$	N
	b	l	b_1 b_1	b_2
PARTICLE SYSTEM	drift $\mu(b)$			
TICLE	time scale fluctuations	$\log(N)^3$ (?)	$N^{\alpha-1}$	N
PAR	genealogy	(?)		

Berestycki, Berestycki, Schweinsberg 2013

