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MOTIVATION

Population Genetics
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Molecular clock: mutations appear at constant rate

Heigh of the tree
↪ number of mutations
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What can be said about the genealogy of this population ?

FINITE VARANCE

N (haploid) individuals
Let N go to ∞

if E[(X1)2]<∞,
the genealogy is given by

Kingman’s coalescent
(a binary tree)

HEAVY TAILS
if P(X1 > x)∼ 1

xα ,
with α∈ (1,2),
the genealogy is given by
a Beta(2−α,α)-coalescent
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in a Beta(2−α,α)-coalescent, blocks merge at rates

λb,k = cα ∫ 1
0 xb−1−α(1− x)α+k−b−1dx

α= 1 α= 1.5 α= 2
KingmanBolthausen-Sznitman

rapid diversity loss wide diversity

LIMITATIONS

rich mathematical structure (Pitman 99 and Sagitov 99)

a priori only suitable for neutral models
equal chances of reproductive success

no selection, no structure
MAJOR FORCES IN EVOLUTION !
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1
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u(t, x) densité de population

=
1
2 uxx +u r0(u)
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per capita growth rate

r0 for B = 2
r0 for B = 5

r0 for B = 0

u(t, x)

saturation
cooperation

B strength of cooperation

v(B)

v(B) speed of the front

Travelling front solutions:
constant profile travelling
at constant speed v(B)

Sample k individuals in the front
Genealogy ?
Position of the ancestors ?
Phase transition ?

↪ discrete modelx



PULLED, SEMIPUSHED AND FULLY PUSHED FRONTS

v(B)

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)

FKPP Equation

B

speed v(B)

2 4

1



PULLED, SEMIPUSHED AND FULLY PUSHED FRONTS

v(B)

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)

FKPP Equation

B

speed v(B)

2 4

1

PULLED PUSHED



PULLED, SEMIPUSHED AND FULLY PUSHED FRONTS

v(B)

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)

FKPP Equation

B

speed v(B)

2 4

1

PULLED PUSHED

Noisy FKPP Equation

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)+

√
u
N W

local density
white noise



PULLED, SEMIPUSHED AND FULLY PUSHED FRONTS

v(B)

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)

FKPP Equation

B

speed v(B)

2 4

1

PULLED PUSHED

Noisy FKPP Equation

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)+

√
u
N W

local density
white noise

time scale
fluctuations

log(N)3

Nα−1

α=
v+

√
v2−1

v−
√

v2−1

α∈ (1,2)
N

α= 1 α= 2
Heuristics and simulations: Birzu et al. ’18
Fluctuations uncover a distinct class of traveling waves, PNAS



PULLED, SEMIPUSHED AND FULLY PUSHED FRONTS

v(B)

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)

FKPP Equation

B

speed v(B)

2 4

1

PULLED PUSHED

Noisy FKPP Equation

ut =
1
2 uxx +

1
2 u(1−u)(1+Bu)+

√
u
N W

local density
white noise

time scale
fluctuations

log(N)3

Nα−1

α=
v+

√
v2−1

v−
√

v2−1

α∈ (1,2)
N

PULLED SEMI FULLY

α= 1 α= 2
Heuristics and simulations: Birzu et al. ’18
Fluctuations uncover a distinct class of traveling waves, PNAS



A TOYMODEL TO INVESTIGATE THE PHASE DIAGRAM

0 1 x

t

killing boundary

branching rate
b
2 >

1
2

branching rate 1
2

drift
−µ(b)

Dyadic branching Brownian motion
with branching rate

r(x)= 1
2 [(b−1)1x<1 +1]

killing at 0

“critical” drift −µ(b)

Extension of The genealogy of branching Brownian motion with absorption

Berestycki, Berestycki, Schweinsberg 2013 (b = 1,µ= 1)



A TOYMODEL TO INVESTIGATE THE PHASE DIAGRAM

0 1 x

t

killing boundary

branching rate
b
2 >

1
2

branching rate 1
2

drift
−µ(b)

Dyadic branching Brownian motion
with branching rate

r(x)= 1
2 [(b−1)1x<1 +1]

killing at 0

“critical” drift −µ(b)

A model for travelling fronts ?

Extension of The genealogy of branching Brownian motion with absorption

Berestycki, Berestycki, Schweinsberg 2013 (b = 1,µ= 1)
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A TOYMODEL TO INVESTIGATE THE PHASE DIAGRAM

+

Same macroscopic behaviours Spectral decomposition of the critical operator Au =
1
2 u′′−µu′+ r(x)u

h̃

stable configuration: eigenvector h̃ (Perron-Frobenius)

Branching Brownian motion FKPP Travelling front

v(B)

µ(b)

≈

linearisation + approximation

b

drift µ(B)

b1 critical = the number of particles is roughly constant

1
2

1
2

b
2

1
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≈ N descendants
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The genealogy of the BBM converges to
a Beta(2−α,α)-coalescent
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α(v)∈ (1,2)



THE SEMIPUSHED REGIME

δ log(N)

excursion exponential growth relaxation

The invasion is driven by excursions of particles
These excursions generate large subfamilies in the associated genealogy, diversity loss
Particles at the tip have a large reproductive value ⇒ large reproductive variance

(in some sense)

b ∈ (b1, b2)

A branching particle system as a model of semipushed fronts, T. (2024)
Convergence of spatial branching processes to α-stable CSBPs: Genealogy of semi-pushed fronts

Foutel-Rodier, Schertzer, T. (2024+)

fast relaxation ⇒ collapse of structure

(Nα−1) (log(N))
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THE FULLY PUSHED REGIME
0 1 x

t

Start with N particles distributed according to h̃

FULLY PUSHED REGIME

Demographic fluctuations ?
Zt = number of individuals
Let N goes to ∞

SCALING LIMIT
( 1

N ZtN)⇒ (X t) X is a Feller diffusion

GENEALOGY
The genealogy of the BBM converges to
Kingman’s coalescent

For b > b2, α> 2

No excursion ! ↝ “CLT”/mean field



THE FULLY PUSHED REGIME

The invasion is pushed by the growth in the front
This generates only binary mergers in the associated genealogy, wide genetic diversity
The tip is not accessible ⇒ finite reproductive variance

b > b2

Spectral analysis and k-spine decomposition of inhomogeneous branching Brownian motions.

Schertzer, T. (2024+)

N

Genealogies in fully pushed fronts.
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